Posted on Leave a comment

Setup E3D Chimera/Dual Head on Duet WiFi/RepRapFirmware – and watercooling intro

Some time ago I bought the, at the time, new E3D Chimera+ Watercooled hotend and some extra stuff for it.


(sorry, misplaced photo of unpacked new Chimera+. I’ll see about digging some up!)

I’ve had a bit of issues getting it up and running as the first pump/Reservoir combo I bought from China didn’t work.

A reservoir is just a container where extra water is stored to make sure the system doesn’t run low. It also makes it easier to fill up and maintain, and catch the air/bubbles the bubbles you always have in a new watercooled setup. All of these things can be done without a reservoir, but it makes it a lot easier to get going and easier to maintain and keep a look on waterlevel.

I’ve done a lot of custom watercooling on computers, servers and rack equipment (yes, you can watercool a switch and U1 server), so went into the basement to find some spare equipment.

So, why did I buy a Chinese pump when I allready had a lot of watercooling equiptment the smart reader might ask, and the answer is simply that I figured my pumps were far too powerfull, and yes, they were still too powerfull when I looked at them again, hehe.

My tubings also didn’t match precisely, which I could have worked around and I needed to print some Nylon barbs to work as an adapter from E3Ds bowden solution to the tubes – You can now buy a Water-cooling barbed adapter kit seperately from E3D, which you couldn’t at the time of my purchase… I could do all this, but I still needed a new pump and reservoir.

I could buy a new pump/reservoir combo from China and wait one more month and hope it worked this time…

Or I could buy the Watercooling kit from E3D and get going. This would also make it possible for me to get a look at their new stuff and document it for you in the form of STEP files on GrabCad.

  1. Prelude
  2. Configure RepRapFirmware
  3. Tool Definition
    1. Tool0
    2. Tool1
    3. Tool definition section code
  4. BLTouch offset from Nozzle0
    1. Mesh Grid
    2. The combined section code is like this
  5. Calibrate BLTouch for Z-offset
    1. Find Z-Offset
  6. Define Leadscrew coordinates for Autolevel
      1. How to use it
      2. X coordinates for M671
      3. Y Coordinate for M671
      4. The combined section code is like this
  7. Setup probe coordinates in bed.g

2) Configure RepRapFirmware

Since I’m using my new xBot Chimera+ Watercooled Carriage I need to both setup a new Tool (the second nozzle) which encludes configuring nozzle distance from each other, configure BLTouch placement in regards to my Nozzle, and reset my Z-offset of my BLTouch. Finally I’ll need to redo the coordinates used to do my probing sequce to autolevel my bed.. yes, it’s a lot actually, but taking it one step at a time, and it’s usually not really that hard.

I’ll recommend writing down what you do, if you are like me and work well with having documented what you do and what to do. 
Regardless of the details of your documentation I’ll strongly recommend you do not delete or change existing setup lines, but instead comment them out using ; and create a new line of code, for your new setup.

3) Tool Definition

Lets first add a new tool using M563 for our second nozzle by editing the config.g file. This includes defining which heater and extruder we are going to be using as well as the relative position it has to the first nozzle.

You can name the Tools if you like, which will show up in your web display. I’ve named them Nozzle1 and Nozzle2 respectively.

3.1) Tool0

First tool is Tool 0 (P0), using Extruder 0 (D0) and Heater 1 (H1)
M563 S"Nozzle1" P0 D0 H1 ; Define tool 0
The Tool ofset is defined using G10 and in relation to the origin of the head. I might have used the point between the two nozzles as the origin and defined offset as -10 and +10 on the X axis respectively, but I’m going to be using Nozzle 1 as the origin. This means the offset coordinates for Tool0 are all just 0.
G10 P0 X0 Y0 Z0 ; Set tool 0 axis offsets

3.2) Tool1

The second nozzle looks like: Tool 1 (P1), using Extruder 1 (D1) and Heater 2 (H2)
M563 S"Nozzle2" P1 D1 H2 ; Define tool
The offset of the second nozzle to the first one is +20 on the X axis, so it will look like this:
G10 P1 X20 Y0 Z0 ; Set tool 1 axis offsets

Note on Fans: If you use the default recommend fan0 as print object cooling fan, you do not need to define a fan.

 

3.3) Tool definition section code:


; Tools
; P = Tool Nr
; D = Extruder Drive nr
; H = Heater used
M563 S"Nozzle1" P0 D0 H1 ; Define tool 0
G10 P0 X0 Y0 Z0 ; Set tool 0 axis offsets
;
M563 S"Nozzle2" P1 D1 H2 ; Define tool 1
G10 P1 X20 Y0 Z0 ; Set tool 1 axis offsets

4) BLTouch offset from Nozzle0

Next up we need to modify the BLTouch position in relation to the Head Origin, which in our case is the first nozzle Tool0.

It is our G31 in the config.g we need to modify. Just leave the Pnnn value as is.

The BLTouch is placed 10mm to the right of the nozzle, which is X10 and 24,26mm in front of the nozzle, which translates to Y-24.26.

Important: Do not use , as normal in metric systems when denoting decimals when defining the gcode.

We are going to set Z offset to 0, and setup this again later to match our new carriage.

This means our (base) G31 looks like this:
G31 P600 X10 Y-24.26 Z0 ; BLTouch offset in relation to Tool0

4.1) Mesh Grid

My Mesh grid is spanning the area from X5,Y5 up to X205,Y165 and probing every 10mm.

Tip: When doing initial setup of the Bed I like to make the probing distance larger, at 20mm to get a rough map to use for manual adjustment.

It means my M557 looks like this:
M557 X5:205 Y5:165 S10 ; Define mesh grid

4.2) The combined section code is like this:

; ## Nozzle Distance from BED - Offset. Higher value, closer to bed.
; Set Z probe trigger value, offset in realtion to nozzle and trigger height adjustment
G31 P600 X10 Y-24.26 Z0 ; Zero offset
M557 X5:205 Y5:165 S10 ; Define mesh grid

5) Calibrate BLTouch for Z-offset

Previously we reset the Z offset using G31 to Z, so it now looks like this:
; ## Nozzle Distance from BED - Offset. Higher value, closer to bed.
; Set Z probe trigger value, offset in realtion to nozzle and trigger height adjustment
G31 P600 X10 Y-24.26 Z0 ; BLTouch offset in relation to Tool0

So, lets go find the proper Z offset:

5.1) Find Z-Offset

  1. Move your sensor to around the middle of the bed. You might even want to make a Macro for this, as it can be usefull for many different cases.
    1. Herer’s a simply macro I named Move to Centerbed, where I home X and Y first:
      G28 XY
      G1 X97 Y120 F4000 ; Move probe to middle of bed
      G28 Z

      We need to home Z before we can continue, or it fails to test properly after firmware 1.21
  2. Move Z untill your nozzle is about 10cm (4 inches) from the bed.
    1. Be ready to click the Emergency Stop in case the probe misbehaves.
    2. Now issue G30 command.
    3. Your BLTouch should now send the Pin Down and your bed should now move up (or nozzle down) untill the BLTouch is triggered.
    4. Hit the Emergency Stop if it didn’t stop or the Pin didn’t drop down.
      1. Go through your deployprobe.g if the Pin didn’t drop down.
  3. With #2 successfull you put your sensor over the middle of the bed and jog Z axis untill your nozzle is touching the bed.
    1. Note: If it refuses to move as it has reached Z-minima you can type in G92 Z5 to tell it, that you are 5mm from Z=0.
  4. Once your nozzle just touched the bed tell the machine we are at Z=0 by issuing:
    G92 Z0
  5. Move Z 10mm away from nozzle
    G1 Z10
  6. Now send G30 S-1 at which point the Pin drops down and the z-axis closes the gap until the BLTouch is triggered.
    1. Z now stops moving and reports the current position without changing anything. Note down the reported value.
  7. You might want to repeat the steps 4-6 a few times to insure consistency. I personally just did it 2 times and later did final adjust by looking at print starts.
  8. Mine reported the following:
    G30 S-1
    Stopped at height 2.4mm
  9. I should insert 2,4mm now, but I’ll detract 0,2 as a safety margin, so I’ll change the Z parameters in the G31 line from 0 to 2.2.
    G31 P600 X10 Y-24.26 Z2.2
    Important: The higher Z value the closer you move the nozzle and bed to each other! It’s better to have a value too low here than too high to avoid the nozzle and bed doing a mating game when homing.
    Important: If you later redo the offset method you should reset the offset to Z0 before starting or it might lead to strange results I’ve found on some occasions.

6) Define Leadscrew coordinates for Autolevel

Since the xBot is using 3x independent motors for our Z axis we need to define the coordinates of the leadscres in relation to the hotend and carriage combination we are using.

This can be a bit harry, but lets start by looking at the xBot Probe Point Helper Drawing I made for this purpose:


The Drawing is not made specifically for the my current xBot Carriage Chimera+ Watercooled but instead lising the dimensions in relation to the rear center manual finger screw. I did it this way to make it easier for people to use their own favorite carriage and hotend solution.

If you want indepth explanation on what I’m doing here, you should read the section on Z-Leadscrew Placement.

6.1) How to use it:

Before starting you should check if your X and Y -maxima coordinates should be changed. I needed to change mine.

Now home your X and Y axes, then move your carriage to the center rear, so BLTouch is lined up to the rear fingerscrew.
The position reads as X97 and I measure the BLTouch to be placed 20mm in front of fingerscrew, meaning my nozzles are actually placed exactly at my Y-Maxima, which is Y215.

6.2) X coordinates for M671

First leadscrew

Front right is placed 153,6mm to the right of the center rear fingerscrew.

Since my center is X97 it amounts to: 97+153,6 = 250,6 for first X coordinate.

Second leadscrew

Front left is placed 153,6mm to the left of center.

So 97-153,6 = -56,6 for second X coordinate.

Third leadscrew

Rear center is placed at the center, so we use 97 for our third X coordinate.

This adds up to the first part of the M671 line, which looks like this so far:
M671 X250.6:-56.6:97

6.3) Y Coordinate for M671

First Leadscrew

Front right is placed 241,1mm in front of the rear center leadscrew, which has the coordinate Y215 since my Nozzles are exactly on top of it and it corresponds to my Y-Maxima

So we take the Y position 215 and detract 241,1, which gives us 215-241,1 = -26,1 for our first Y coordinate

Second Leadscrew

This is placed at the same point on the Y axis as the first leadscrw, so -26,1 for our second Y coordinate

Third Leadscrew

This on is placed 63,5mm further out the Y axis, so:

215 + 63,5 = 278,5 for our third Y coordinate

When adding the Y coordinates to our M671 codeline we get the following:
M671 X250.6:-56.6:97 Y-26.1:-26.1:278.5 S3

The trailing S3 defines maximum correction the leadscrews can do. Default is 1.

6.4) The combined section code is like this:

; Define the X and Y coordinates of the leadscrews.
; Must come after M584, M667 and M669
; S = Maximum correction
; Motor order: Front right, front left, rear center.
; Snn Maximum correction to apply to each leadscrew in mm (optional, default 1.0)
M671 X250.6:-56.6:97 Y-26.1:-26.1:278.5 S3

7) Setup probe coordinates in bed.g for G32

Now its sime to review our bed.g file to see if it’s still valid.

It’s not really crucial where you probe, but you should try to make the probe points as close to each leadscrews as possible.

I set all mine to 2mm from min and max for each axis.. just in case a wire or something got between my carriage and the printer edges.

The Third point needs to take into account how BLTouch is placed 20mm in front of the nozzles, as it wouldn’t be able to probe at Y215 but at best at Y190. I’ve deducted the extra 2mm and landed on Y188.

It might be a bit fiddly to figure it out, as the actual probing coordinates is for the nozzle, so can be confusing when looking at it.

; bed.g
; Called using G32
; Called to perform Autolevel using 3-point probe
;
M561 ; clear any bed transform
; Made allowances for BLTouch being up to 30mm in front of nozzle. Typical is 27mm+/-
Probe 3-point
M401 ; Deploy probe - deployprobe.g
G30 P0 X207 Y2 Z-9999 ; Front Right
G30 P1 X2 Y2 Z-9999 ; Front Left
G30 P2 X97 Y188 Z-9999 S3 ; Center Rear
M402 ; Retract Probe - retractprobe.g

Posted on 2 Comments

xBot Medium – Mechanical Parts – (BOM cont.)

I’ve previously went over the Custom parts and Electronics and Electrical parts in two seperate posts needed to build the xBot-Medium Printer. This included motors and limit switches, so everything with current in it.

In this final BOM post I’ll list the inert mechanical parts.

I’ve set up a xBot-Medium Github Repository where the files can be found for this project. As I havn’t finished it yet, all the files aren’t there, but they will be! Only the .STP files for the Dibond frame pieces and some a few for printed parts are missing, so it’s pretty much complete allready.

A complete BOM file is in place in the Github Repository.

This post is sorted in the following categories:

  1. Parts for the XY Axes
    1. 200-GT2 Belts
    2. 20-GT2 5mm bore Pulleys
    3. 20-GT2 8mm bore Pulleys
    4. 610-GT2 Belts
    5. Sliders
    6. LM6LUU
    7. Spacers
    8. Flanged 688 bearings
  2. Parts for the Z-liftplate
    1. Anti-backlash nuts
    2. 12mm flanged bearings
    3. 8mm flanged bearings
    4. Fingerscrews
  3. Screws and nuts
    1. Screws for Z-Stage
    2. Screws for the Frame
    3. Motors
      1. Motorshields
    4. Limit switches
    5. Under the machine
      1. Z-Rod brackets
      2. Connectors
      3. Duet WiFi and Duex Mounting
      4. Powersupply
      5. Chamber Heater
      6. SSR

1) Parts for the XY axes

Lots of parts going into this contraption. It IS one of the key parts to make this printer design so successfull. It’s not really that complicated once you wrap your brain around how it’s working though.

200GT-2 Belts

Price # €0,33 total for 2pcs: €0,66 from Robotdigg

We basically have 1 motor pr axis. They each use a short 200-GT2 belt to push and pull at the end of one 8mm rod pr axis.

20-GT2 5mm bore Pulleys

Price each €1,33 for both from RobotDigg €2,65

In order for our motors to make use of the 200-GT2 Belts, they each need a 20-GT2 Pulley with 5mm bore.

20-GT2 8mm bore Pulleys

Price for 10psc at RobotDigg: €6,22

At the end of each 8mm rods there is a 20-GT2 pulleys connected to the opposite 8mm rod for that axis with the closed 610-GT2 belts.

At the furthest end of 1 rod of the X and Y axis, there is an extra 20-GT2 Pulley, where the belt from each motor is connected to.

It means when motor Y pulls at the end of Rod 1 for Axis Y that entire rod turns around. Via the 20-GT2 pulleys in each end, and the connected 610-GT2 belts makes the corrosponding second Y rod turn synchronized.

Same goes on for the 2x 8mm rods for the X axis.

610-GT2 Belts

Price for x4 from RobotDigg: €2,98

We have 4 of these 610mm closed/endless GT2 belts which are used on each end of each pair of 8mm rod for X and Y axis.

Sliders

Price for 4sets €8,6

1 set is made up of 2 plastic parts a spring and a selfgraphite bushing 30mm long 8mm inner 12mm outer diameter

Sliding along each 8mm rod, there is a “Slider” which slides along the rods by utilizing a 30mm long 8id/12od mm self graphite bushing.

Each Slider can be split in two in order to run one side of the belt through the middle of it. The belt is is fastened in the middle using a small spring, which also helps ensuring the right tension and even makes up for some small inaccuracies you might have in the axes.

Each slider then runs along/on an 8mm rod. Pulled long by its own 610-GT2 belt. Each axis consists of 2 sliders connected with a 6mm rod where the Carriage with hotend is located on the cross-section between the 6mm rods of the X and Y axis.

The rods rotate as part of how they pull the sliders, which is the reason for the bushings as ball bearings would break down here.
The bushings also means extremely quiet running, which is just awesome.

Contrary to the sliders, the Carriage uses 2x LM6LUU ball bearings as the 6mm rods aren’t rotating, and also to provide a bit of compensation for tiny inaccuracies in the construction – ball bearings have build in about 1% give.

It all means there is equal identical directional force being applied on both sides of the carriage, so we do not experience any form of skew on the carriage as with CoreXY.

The bushings are listed as not requiring lubrication, but they really do benefit from a bit of lubrication. Especially if you buy cheap rods with bad tolerance. Many cheap rods are too big, which might be nice for ball-bearings (remember the 1% tolerance), as it gives a tighter fit, but with bushings it just means more friction, noise and potential bad print quality. You might also experience problems inserting the flanged bearings onto the ends of the rods, if you buy cheap rods.

Use acid free clear and thin sewing or cycle oil. Or PTFE spray, which I’m using.

 

You can get all sorts of upgrades which are mostly relevant if you tend to pick your machine apart a lot.

In those cases the plastc sliders rapidly degrades and after a few times they no longer grip onto the 6mm rods very well.

For such cases, you can get various different Aluminium sliders. I have these linked parts, but other variations also readily available now.

They do cost over €30 though for a set. Beware the dimensions for rods as some of these use 8mm cross rods instead of the 6mm we use.

 

LM6LUU

Price for 2: €3,16

As decribed above, we need 2x long 6mm ball bearings for our Carriage. You might be tempted to use Bushings here, but if you have the slighted misalignment they are going to make grinding noises and ruin the print. These bearings also help compensate a bit for misalignment, as the balls have a build in 1% give.

You might want to buy extras, as you need to change them now and then – when they begin to rattle.

Spacers

Price for a bag €4,7

We need some accuracte plastic spacers M8,2x14x5 (inner, outer, height) at the end of all our 8mm rods for the X and Y axes. They go between the 20-GT2 pulleys and the outer flanged bearing in the side of the frame.

It’s important they are uniform in size, so I really prefer to buy these instead of printing them. Especially since a bag with 200x spacer 5mm thick costs less than €5. Such a bag has served me in multiple builds. You can’t use a spacerset from Ultimaker 2 as we use more spacers than they do. It wouldn’t save us any money regardless if we could use it though.

Specifics:

I don’t even know if you can get them in pieces 15 or 25mm long, but this listing shows the fewest, longest pieces possible.

It is 150mm total, so if you get a back with 5mm long/wide spacers, you need 30 of those.

  • 4x 25mm long
  • 2x 15mm long
  • 2x 10mm long

Flanged Bearings

Price for 8 at RobotDigg €3,32

Our 8mm rods are inserted into a single F688 Flanged Bearing at each end, so we need 8 of those.

If you find you can’t get them onto your 8mm rods I’ll wager it’s due to bad quality rods and you should demand the money back.

2) Parts for the Z-liftplate

We allready went over the Z-liftplate and the heated bed itself in the first 2 posts, and we’ll look at the bits and pieces here.

Antibacklash nuts

Price for 3 from RobotDigg €7,46

We are going to be using 3 of these nuts for our Z-stage. We use these as they are cheap and direct replace for standard lead scerw nuts. The reason for using Anti-backlash is to avoid issues with Backlash which might show some, especially when doing Z-lift during prints, but also after a while, when the nuts and/or rods are a bit worn.

The Anti-backlash nuts compensate for the wear and tear and also for bad quality the lead screws, and even the nuts themselves, might have.

The partnumber is B-ABN88 where the 88 is 8diameter and 8mm travel pr rotation. Also call “Lead”.

   

You might wonder about what Backlash is, so you should head over and read this nice post about it.

Both these images are from the post on Backlash on liutaioMottola.com

12mm flanged bearings

Price for 2 LMK12LUU €4,64 from RobotDigg

We use 2 of these to for the rear end of our Z-liftplate. They provide a nice large surface area to use as stabalizer for our plate as it goes up and down.

8mm flanged bearings

Price for 2 LMH8UU: €4,14

We use  2Pcs of these LMH8UU ellipse/oval flanged ball bearing to support each of the front Z-axis motor.

Fingerscrews

Price for 3 sets €3,39

We need 3 sets of these to adjust our Heated Bed.

Each set consists of a fingerscrew (which comes in gold and silver) a powfull spring and a m6 washer + 20mm m3 flat head screw to sink into the countersunk holes in the heated bed

 

3) Screws and Nuts

You can get a complete list of all items needed, included a listing of the screws and nuts from the xBot Medium Github Repository. Look for the xBot Medium-BOM.pdf file

Screws for Z-stage

A complete listing of screws for the Z-stage. I’m not listing price for these.

Only thing of note here is the fact that we are using m3 square nuts for the frame as these sits better in the cutouts. Aside from this, all parts are totally standard.

Screws for the Frame:

  • Right side:
    • 12x m3 16mm Button Head Screws
    • 12x m3 Square Nuts
  • Left Side
    • 12x m3 16mm Button Head Screws
    • 12x m3 Square Nuts
  • Front
    • 5x m3 16mm Button Head Screws
    • 5x m3 Square Nuts
  • Back
    • 6x m3 16mm Button Head Screws
    • 6m m3 Square Nuts
  • Door Hinges
    • 4x m3 10mm Button head Screws (might change)

Motors

  • Z-Motors
    • 12x m3 10mm Button Head Screws
  • XY Motors
    • 8x m3 30mm Button Head Screws
    • 8x m3 Metal Spacer
Motorshields
  • 8x m3 10mm Button Head Screws

Limit Switches

You can either use 2.5mm screws + a nut or an m3 screw if you tap the switch first. I like to tap mine.

  • Z-Max Limit Switches
    • 6x m3 10mm Button Head Screws
      or
    • 6x m2.5 12mm Screws
    • 6x m2.5 nuts
  • X and Y Limit Switches
    • 4x m3 10mm Button Head Screws
      or
    • 4x m2.5 12mm Screws
    • 4x m2.5 nuts

Under the machine

Z-Rod brackets

  • 12mm Z-rod Brackets
    • 4x 12mm m3 Button Head
  • 8mm Z-rod Brackets
    • 4x 12mm m3 Button Head

Connectors

  • Front USB
    • 2x m3 10mm Button Head Screws
  • Rear USB
    • 2x m3 20mm Button Head Screws
  • Power Connector

Duet WiFi and Duex Mounting

  • 8x m3 10mm Button Head Screws
  • 8x m3 8mm Button Head Screws

Power Supply

  • 4x m4 10-12mm Button Head Screws

Chamber Heater

  • 4x m4 20mm Button Head Screws

SSR

  • 2x m4 20mm Button Head Screws
Posted on Leave a comment

xBot Medium – Electronics and Electrical parts (BOM cont.)

In this post I’ll continue describing what is needed to actually build the xBot-Medium printer. Last time I talked about the Custom Parts, and this time it will be about the Electronics and Electrical parts.

I’ve set up a xBot-Medium Github Repository where the files can be found for this project. As I havn’t finished it yet, all the files aren’t there, but they will be! Only the .STP files for the Dibond frame pieces and some a few for printed parts are missing, so it’s pretty much complete allready.

This post is going to be about the Electronics and Electrical parts we need for the xBot-Medium 3D Printer. I’ll list the Mechanical parts in a later post.

All “BOM” posts here on my blog are going to be condensed into a BOM in list form on the x-Bot-Medium Github Repository.

Some parts are both electrical and mechancial, like the motors, and such items are added to this post, while the Mechanical parts post are going to be the completely inert like the various pulleys, belts, nuts and such.

This is mostly going to be a list without a whole lot of exlanation to it.

xBot Medium electrical and electronical listing

  1. Duet WiFi
    1. Thermocoupler Daughterboard
  2. Duex5
    1. Consideration if choosing Duex2
  3. PanelDue 5″
  4. BLTouch SMART
  5. Heated Bed
    1. AC Silicone heater 500w
    2. SSR
  6. 3x Z-Motors
  7. XY Motors
  8. Extruder(motors)
  9. Chamber Heater
    1. 3x 30mm fans
  10. 2x 30mm fans for Printed objects
  11. Powersupply
  12. LED – RGB
    1. Manual on-off rocker
  13. Various
    1. Limit switches
      1. Long arm
      2. Short arm
    2. Front USB power out
    3. Rear USB for Controller access
    4. AC Power plug and on/off
    5. GX12 and G16 connectors
  14. Carriage
  15. Hotend
    1. Thermocoupler
    2. Plated Cobber nozzle
    3. 40w Heater Cartridge
  16. Untill next time

 

Duet Wifi

As the main controller, I’m using the Duet WiFi from duet3d.

Price: inc 20% vat: €162,3

While the price does seem rather high, you should take all the features in consideration.

Quality
Best quality of any controller. Simple as that. Both regarding features and quality. There are many safety features build in, like it doesn’t burn if a driver or sensor is accidentially unplugged while power is on, which is the main cause of dead electronics for many people. It doesn’t require active cooling as it get rids of the heat through PCB surface – active cooling is always a good idea though, but it’s not a requirment like pretty much all machines using pololu drivers.

Drivers
It’s top of the line quality and uses 5x TMC2660, which are the highest end drivers you can get on any controller. They are very powerfull SilentStep Sticks (big brother to TMC2100/TMC2130) and can drive up to 3amp pr driver. Most people end up going out and spend money on silent step sticks anyway, which easily ends up at €50 for a set of those – and you can’t buy TMC2660 pololu sticks.

Remote
At some point many people start looking at a remote way to control and monitor the printer, and end up going out to buy a Raspberry Pi, which is another €35.
Regardless of what solution people use they don’t ever get close to the integrated webserver allready in the Duet WiFi. It’s hugely powerfull and very responsive. Has a ton of usefull information, and you even use it to setup the entire printer, so no need to compile firmware on your printer and then transfer using USB.
Since it’s integrated it also talks directly to the controller instead of using USB.
It also provides for real time changes in setup of most settings. Change fans, extrusionrate and LED using sliders etc etc.

Features

From the official Duet3D Features page.

Feature list
From Duet3d.com site

The DuetWifi is an advanced 32 bit electronics for the control of 3D printers and other CNC machines. It has the same features as the Duet Ethernet other than providing a WiFi connectivity rather than ethernet, full feature description is available on our wiki, in summary:

  • Powerful 32 Bit Processor
  • Dedicated Wifi module
  • Super quiet TMC2660 stepper drivers, up to 256 microstepping.
  • Dual extruders on the main board, up to 5 more extruders on the expansion board.
  • High Power rating: Each stepper driver is capable of 2.8A motor current, currently limited in software to 2.4A. The bed heater channel is specifically designed for high current (18A).
  • Connect via PC, tablet or smartphone on the same network to the on board web interface.
  • Setup your printer and update the firmware through the web interface.
  • Expandable up to 7 extruders with Firmware support for mixing nozzles and remapping axes to use high power external drivers.
  • Support for the PanelDue: a full colour graphic touch screen

Thermocoupler Daughterboard

Price inc 20% vat: €31

To be honest: Im not a fan of this design (put mildly)! I find it rather cumbersome how it’s stacked like that, and it can easily fall out if mounted upside down.. and thus prone to failure. The small terminals are very unforgiving as well, so can be hard getting a good connection.

As much as I find the price warranted for the Duet WiFi, I do look at these things the opposite way…

But while we supposedly can use 3rd party solutions I havn’t managed to make anything work, or seen anyone making anything work, so if you want to use Thermocouplers (top board below) or PT100 (big lower board) you have to use the official Duet Daughterboards.

If you know of a sure way to make 3rd party boards to work, please let me/us know! Not just a link to the right chip, it must be a complete solution 🙂

Photos from official Duet3D shop.

Usage in build:

1-2x Thermocoupler Daughterboards, price total €31-62 inc 20% vat!

I’m going to use Thermocoupler for my hotend and for the heated bed as they react much faster and are much more accurate than standard Thermistors. It’s also a must for hotend if you want to print over 280c as a thermistor dies at 290c or so. Thermocoupler and PT100 sensors don’t tend to die on you like Thermistors can either, so it’s a one-time purchace.

I’m still a bit undecided as to wheter I want to use a Thermocoupler or a plain Thermistor for temperature sensing in the chamber. It’s really a high price to pay for this, but lets see if I get any sponsoring for the project.

I used to use PT100 before starting to use Duet, but the PT100 daughterboards were much, much more expensive than Thermocoupler boards, so that is the only reason I use Thermocoupler. There is no actual difference in usage. PT100 should be less prone to suffer from interference, but wheter that transfer over in reality is always questionable 🙂

Duex5

Price: inc 20% vat: €111,6 for Duex5
Price: inc 20% vat: €77,8 for Duex2

The Duet WiFi has 5 drivers, so you might actually do ok with Duex2 if you only want 1-2 Extruders. There used to be other differences, but not anymore.

Driver assignments

  • 1 for X
  • 1 for Y
  • 3 for Z
  • 1-2 extruders. (Can use Duex2)
  • 3-5 extruders. (Need Duex5)

The Duex2/5 boards has the following features:

The Duex2 and Duex5 has the same feature list aside from the first 4 points here, listed as 2/5:

  • 2/5 additional TMC2660 stepper motor drivers with stall notification.
  • 2/5 additional extruder heater outputs.
  • 2/5 servo outputs with 5V power and 5V signal levels, sharing control channels with the heaters, so you can use unused heater channels to drive servos.
  • 2/5 additional endstop inputs with indicator LEDs and 3.3V/5V voltage selection. These are also usable as outputs.
  • 6 additional controlled fan outputs, also usable for driving LEDs etc. The output voltage may be switched between 5V, 12V and VIN.
  • 4 uncommitted general purpose I/O pins.
  • 12V switching regulator, for generating a 12V supply for fans, LEDs etc. when the VIN power is higher than 12V.
  • 5 additional thermistor inputs.
  • Support for 2 more thermocouple or PT100 daughter boards, supporting up to 4 more sensors.
  • Optional 5V external power input for powering servos, fans etc.

Official complete feature list and comparison.

Considerations if choosing Duex2

While researching this I learned the difference between Duex 2 and 5 is only the 4 first points in the above list.

I thought Duex2 would have less fan headers as well. Last year Duex2 also didn’t come with the 12v switching regulator.

It all mean you can pick Duex2 if you don’t plan on using more than 2 extruders, but have to pick Duex5 if you plan on using more than 2 Extruders.

PanelDue 5″

Price: out of stock?
Price Filafarm; inc 19% VAT: 4.3″ €99,89
Price Filafarm; inc 19% VAT: 5″ €109,9

Lets say it as it is: You don’t really need a screen. The Web GUI is just that awesome!

I used my first Duet WiFi printer for over a year without getting around to using the PanelDue I had lying around as the Webinterface is just so super nice and lets face it, these things are really expensive as well.

Price vs performance

It really is a matter of usage preferences as they are stocked full up with features, like:

  • Buying a PanelDue gives you external SD card access (the big SD card type).
  • True serial connection, so full control of the machine (unlike cheap MKS displays which doesn’t really talk to the controller, but only sends commands
    • I mention MKS as someone has worked up an alpha firmware for them, so they might be able to work as standin for PanelDue (using serial)).
  • One awesome thing, which I havn’t seen mentioned elsewhere is how the macro’s you create in Web GUI are transferred to the display as menues and buttons completely automatically. This is awesome, and a super way to stack up on functions: ie i you often do some thing like changing filament, you can make a macro to heatup and retract etc.

Here you can see how I made a few macros to test movement on my previous printer project:


I use the display a lot on my BeTrue3D Printer due to it’s many extruders, but on my normal primary machine I only really use display to check up on temperature at a glance and such.

If that is how you use display as well, you might want to try using the machine without the LCD. Might just use an old phone or tablet, although the response would not be almost instant.

BLTouch SMART

Price Filafarm inc 19% VAT €39.90

We use this sensor to ensure correct distance betwee hotend nozzle and print bed and also to take advantage of our 3-motor Z-axis for complete true autolevel function.

Since the xBot-Medium is 10mm deeper than an Ultimaker 2+ we can now squeese one of these in in front of our hotend.

It’s a combination of a normal limit switch functionality and a servo motor to raise up this switch after engaging, which was a somewhat common solution some years ago. ANTClabs combined these things an came up with the BLTouch.

Lets start by saying: Don’t buy copies. Just don’t. There is a huge difference in quality and you really want these things to work 100%.

If you look around you find a lot of people having problems.. when you dig in, you find that all the people having issues are using copies.

You also want the newest version, called SMART. You can check the difference by the sticker labeled SMART, by the tip of the probe-pin and the BLTouch also needs to have serial number printed on it, which can be verified a

 

 

Heated Bed

Price from clever3d.de inc VAT €54-71

I’m using a 5mm thick PEI-Coated Aluminium bed with an AC Silicone heater under.

You can pick from 2 different qualities and several different colors and even get logo or text lasered into the surface.

The price at €54 is the lowest price uses a cast aluminium plate, while you can get a milled plate at €71. I’m honestly not sure what my plates are, as I couldn’t choose quality back then.

Be sure to pick the Ultimaker 2 257x229x5mm under dimensions.

Email the owner to agree on color and price etc, and to be sure the plate comes with holes for fingerscrews… it should as he’s using my drawings for these plates <wink>

I print PLA, ABS+ and PETG on it with great results. I’ve heard people say PETG sticks too hard, but I’ve had no problems with anything.
I do have seperate glass plates I put on top of my bed when I print Nylon (glue on glass). Some PLA don’t want to stick very well to this plate unless I heat it a lot, so sometimes use glass for PLA as well.

AC Silicone heater 500w

Price from Keenovo €40,5

Specifications: 200X240mm 500W 220V build in Thermocouple Type-K sensor.
Link to same version with Thermistor instead of Thermocouple sensor.

As most everything else, there are different levels of quality, and the same goes for Silicone heaters. I’ve come to like the market leader Keenovo heaters and am using one of their heaters for the xBot-Medium printer.

They come with build in wires for the heater itself and wires for Thermistor. I’ve asked them if they can build in Thermocouple instead, which they agreed to do, so now I’m just waiting to recieve my super nice Heaterpad.

These pads comes with high quality 3M tape preapplied to one side.

SSR

Price (RobotDigg) €4

SSR10A DC-AC Solid-state Relay

There are many copies of Solid State Relays (SSR) on the market, so make sure to buy from somewhere you trust. I’ve bought SSR from RobotDigg several times, and always recieved good ones.

Make sure you buy one labaled as DC-AC as it is controlled by DC from our Duet and then in turn controll the AC input to the bed. The AMP is really only important if you use a DC-DC SSR – ie if you have dedicated DC powersupply for your bed, then the SSR must be able to handle the amount of amperage you put through it.

3x Z-Motors

Price from RobotDigg: 3x €26,7 = $80
SKU: 17HS3001-280N w Lead Screw: 280mm long, Tr8x8(P2)

Many people are using various couplers, but I really prefer using motors with embedded lead-screws. Seems the Quality Control is much better on these than the loose lead screws we can buy. At least if we don’t go out and pay a lot of money for them.

Regardless though, we need motors with embedded lead-screws to take advantage of our entire Z-distance. If you use a coupler you would sacrifice about the length of the coupler on Z axis height.

These motors comes with a POM nut, but we can really use it as they are too large to fit in there. I could have modified it some I gues, but I also really want to use the anti-backlash nuts instead, which are cheaper to replace in case of wear and tear.

Specifications of the motors

Threaded Rod NEMA17 Stepper body 40mm lenth, 280mm Tr8*8 Leadscrew and POM Nut

The NEMA17 Threaded Rod Stepper Motor has a precision Acme Tr8*8 Leadscrew coming out directly from the nema17 as a Threaded Shaft.

200 steps per revolution (1.8 deg/step)
2 Phase, Bipolar, 4 wires
Rated Voltage 2V DC
Rated Current 1.2A
Phase Resistance: 1.7 Ohm ± 10% (20º C)
Phase inductance: 4.5 mH ± 20% (1kHz 1 V rms)
Holding torque: 0.4 N.m Min.
Motor body length: 40mm

Acme Lead Screw: 280mm long, Tr8x8(P2)
Nut: POM

The Tr8*8(P2) means it is 8mm in diameter and one revolution give a travel distance of 8mm. It has a pitch of 2mm which is the distance between the raised “edges” (leads). It has 4 starts, meaning 4 seperate “raised edges” (starts).

X and Y Motors

Price from OMC-Stepperonline.com 2x €11,9 = €23,8

For X and Y axis I can use high quality 0.9 degree stepper motors, as I made room for motors with a body length of 48mm instead of the normal 40mm length available in an Ultimaker 2

It means I can use the best quality and best suited 0.9 motor I’ve been able to find for the X and Y axes, namely the 17HM19-2004S from OMC-Stepperonline.com.

You might ask: Why not just use some smaller 0.9 motor? Lots of those have high holding torque and ok amperage etc etc… good question!

Problem is however, that between the pancake model I use for my extruders and up to this powerfull full size motor, they all have really high Inductance raiting, meaning they are slow!

Additional resources

Extruder(motors)

Price for 17HM08-1204S from OMC-Stepperonline.com (48mm long) €11,9
Price for 17HM08-1204S from OMC-Stepperonline.com (21mm long) €9,9

I’m going to be using 2 different motor types:

  • The same large 48mm size as used for X and Y meant for 2.85/3mm filament, as they do require some extra power.
    • See specifications just above
  • I’m using the panckage nema 17 which is just 21mm long for my normal 1,75mm filament. These are more than strong enough and really a perfect fit.
    • Note: You can use these for 2.85/3mm as well, but have to give them more current than when using them for 1,75mm. Might need to put a heatsink on it as well, which is why I simply opt to use the larger motor for the thicker filament.
   

This small motor is awesome! Plain and simple.

You might wonder at the small size for an extruder, but by utilizing it’s awesome specifications with it’s 0.9 degree steps and powerfull 11Ncm / 15,6oz.in / 1,12kg/cm holding torque inserted into my Belted Extruder v4 it’s packing an awesome package that runs smooth, silent and cool!

Specialize brackets for my Belted Extruder v4 to quickly mount and dismount them on the xBot-Medium will be released.

Additional resources

Chamber Heater

Price eBay €4,75

I’ve bought a 200w 24v heater wiht the dimensions: 140 x 32 x 26 mm. I actually bought mine from Amazon.de, but it’s not available anymore.

Be sure to buy a 24v version. I accidentially bought 12v at first. It’s listed on the side of them. The photo below with measurements on it displays a 12v heater.

It’s really just a small heater element so we need some fans to blow the heat up into our Chamber.

So far I’ve just set my heated bed at 140c degrees and waited for the temperature to reach 40-50c before I started printing Nylon and such.

To be honest I don’t generally need a heater, but I wanted to add one, now that i started from scratch. All materials, including PLA and PETG benefits from higher than normal temperature at a stable level, but the inclosed box design of the printer will ensure a temperature of around 40c after printing for a while, even with no lid on it.

I’ve designed a printable fan-duct which is mounted over the hole in the bottom frame part through which the hot air is exhaused through. It needs to be printed in ABS or similar to handle the temperature.
The printed parts are or will be located on the xBot-Medium Github repository and in the Thingiverse Group for xBot-Medium once I’m done with the files.

3x 30mm fans

Price 3x €1,21 = €3,63

I’ve just bought some standard so called 24v 3010 Hotend Cooling Fan for the Chamber heater. 3fans fits snugly on it, so that’s what I did.

2x 30mm fans for Printed objects

Price 2x €2,08 = €4,17

You either need 2x 30mm fans or figure out something else. Yes, it is plenty to cool the stuff you print, so no need for 2x 50mm blower fans.
You could use 2 of the fans listed above, which I’m using for the Chamber Heater, but I’ve decided to try out some “aluminium” fans instead, which are slightly more expensive.

I normally pick 12v fans for this as it’s very hard to find good quality 24v fans, and if you do, they cost way more.

It means I just put them in series:

  1. The 24v power line connects to red wire on one fan
  2. Gnd to the black wire on the other fan.
  3. The unused pin from each fan is connected by a wire or similar.
  4. Voila, you now have your two 12v fan running in series on your 24v system.

Note: not all 12v fans can do this, but most I’ve tried do it 100%.

Powersupply

Price: €60

The price is approximate what you might expect to find a good Powersupply at.

If you don’t plan on using Chamber heater, you can find a good Meanwell 24v 10amperage powersupply at half the above price.

If you do plan on using the Chamber Heater you should look for a 24v 18-20amperage to make sure you have enough juice.

I’m running my primary printer on a 24v 10amp PSU which is passively cooled, ie no fans, and it never even gets temperate, so no need to go overboard.

Better to get good quality with lower amp, than buy crummy 40amp psu.

You need a relatively low profile powersupply. Not much higher than 40mm.

For the xBot-Medium I managed to win an auction for a MeanWell HPR-450-24 powersupply. This translates to 24v 450w 18.8amp

I originally believed it had temperature controlled fan, but what it has is on/off fan that activates at some % load. It’s loud, so I need to figure something out to tame is.

Additional ressources

  • Dimensions: Width 105mm, height 41mm, depth 218mm
  • Datasheet opens pdf

LED – RGB

Price for 5m: €11,25

You don’t need RGB and I’ve always just used plain white light, but I recently learned you could use and control these using 3x FAN headers on the Duet/Duex.

I went and bought 5Meters of 24v RGB LED strip. Like normal led strips you can cut these at invertal and so make the lengths you want. 5m is plenty for several different projects.

I bought mine in the EU, so I guess you can get it at half price in China.

Manual on-off rocker

Price less than €1

Manual on/off switch for our front RGB LED light. I just like to have the ability to switch that rocker to turn the off sometimes even though the lights are programably turned on.

I hope I can just use this on the GND to the LED strip, or maybe I need it on the v+ depending on what is shared on the FAN headers, but lets see!

Just look around. It’s often cheaper to buy 2 than 1 and you might get 5 at almost the same price.

Various

 

Limit switches – long arms

Price for x2 €1,12

We need 2x Limit Switches with long arms for our X and Y axes.

Limit switches – short arm

Price for x3 €1,5

If you use BLTouch sensor you don’t have to install the 3 Limit Switches as endstop at the Z-Max end, but I’ll recommend that you do.

Partly as you can use it as backup system if the sensor fails and you can use them to synchronize the axes as an initial setup sequence.

Considering the price, I see it as a no-brainer to go and install them.

Front USB power out

Price €1,12

I really like having an USB power output in my 3D Printers. It can be used for webcams, powering phone/tablet or, as my favorite, powering my small USB vacumer for cleaning up the 3D Priner interior!

It requires a custom printed part which is available with the rest on the xBot-Medium Github Repository.

This video does not show the xBot-Medium, but is a video from my youtube channel showing my current primary machine.

You could also install the USB adapter intended for the rear side in this spot instead, if you’d rather go that route. I have not yet made any adapter for this option.

Rear USB for Controller access

Price €1,79

Since we have our Duet WiFi complete enclosed under our frame we need some sort of extensions to make it possible to connect to the controller via USB in case of various update and maintenance.

It’s called an USB 2.0 B Female Socket Panel Mount To Micro 5 Pin USB Male – Cable 50cm

You can route this to the front USB port instead if you like. I just havn’t made an adapter for this yet, but it should be a simple matter.

 

AC Power plug and on/off

Price €1,12

You can get them in a variety of models. I vastly prefer this model with build in fuse as it removes the need for an inline fuse between the power plug inlet and the internal powersupply.

You can get them with and without light and with different colors for the rocker. The cheapest model is without light and black rocker, while the red-rocker with light is a very close second.

Be sure to wire it correctly, so it’s the live wire connection going through the fuse.

GX12 and G16 connectors

Prices at around €1 each – so totalling at around €7


If you can wait for it, then order from china, as they cost a fraction of the cost. Not just a bit cheaper, but like 1/10 price sometimes!

  • 4x GX12-4
    • We can mount 4 external extruders, each of which takes a GX12-4 pin connector.
  • 1x GX16 8pin
    • We need a GX16 8-pin for our Carriage for Hotend Heater (2p), Heatsink Fan (2p), Object fan (2p), Sensor (2p).
  • 1x GX16 5pin
    • We are using a seperate GX16 5-pin for our BLTouch sensor.
  • 1x GX16 4pin
    • We need a single GX16 4-pin to hook up our heated bed: Heater (2p) and Sensor (2p)
 

Carriage

This is just a word used to describe the combined collection of objects driving around along with the Hotend. Ie, the mechanisms themselves, fasteners, extra fans and sensors and so on.

We allready talked about the BLTouch, which is definently a part of the Carriage.
We also went over the 2 fans used to cool our Printed Objects.

Hotend

Price: E3Dv6 Full Bowden €63,6

I’m going to use genuine Full E3Dv6 1,75mm hotends. I also have a (genuine) Full E3Dv6 3mm I use when printing Flexibles as flexibles in 1,75mm just aren’t viable.

You can use some other hotend if you like, but I prefer the E3Dv6 FULL 1,75mm hotend.

  • The FULL part is important as it is made up of an aluminium heater block, a steel heatbreak and a seperate aluminium heatsink. This model has very tight control over extrusion as the seperate pieces of the heatsink (and different materials) makes for very cleanly defined heat and coldzones. Retraction is normally around 1-1.5mm only, when using bowdenThe bowden tube goes down into the top of the heatsink and into the very top of the steel heatbreak. This means the PTFE materail from the bowden is far away from the hot zone, meaning you can use temperatures way above the LITE version (280 with thermistor – 500 with thermocoupler/pt100 sensor)If you by accident pull up in the bowden while the hotend is hot, nothing happens as the molten plastic can’t get up in the space between bowden and heatbreak. The added friction created by the steel heatbreak is actually a good thing as it makes for very tight filament printing control.
  • The LITE version is not recommended in my world. It is made up of a combined steel heatbreak with embedded heatbreak. This model does not have the same tight control as the FULL as it doesn’t have as effective heatsink and because the PTFE Bowden tube goes all the way down through the heatsink and rest directly on top of the Heater block.If you by accident pull up in the bowden while the hotend is hot, the molten plastic will guarenteed slip up in the space just above the nozzle, inside the heatbreak now freed from PTFE Bowden tube. It means you (most likely / often) have to take it all apart to clean it up, to get it working again!It does not have as tight control and while the FULL only requires 1-1.5mm retract, this LITE version takes 6mm! This long retract is required as it does not have as sharply defined hot and cold ends, so lots of “internal stringing” is going on, which in turn needs to be pushed out of the hotend after each retract = not as clean print. They still print better than most other hotends, don’t get me wrong, but not compared to the FULL!

The price includes lots of parts. You can view all under what’s in the box, from where I’ve taken below photos.

Some parts to mention: The nice Steel heatbreak and aluminium heatbreak with the bowden coupler, full kit with fan shroud, fan, blue silicone caps, thermistor and 24v (30w) heater.

There’s also a single 0,4mm standard Brass nozzle included.

Thermocoupler

Price €12,5

I’m not a huge fan of Thermistors. Both because they can break, but also because they aren’t that accuracte and I print at higher temperatures than they can go (300+), meaning I’m using a Thermocoupler sensor instead.

E3D has begun selling these, which works fine with the Duet. Duet sell these same Thermocouplers from their store now as well.

It does require you to use a Thermocoupler daughterboard for the Duet, so it’s a pretty big extra expense. You can always add this later.

Plated Copper Nozzle

Price inc. vat €11,75

In my world these things aren’t even optional. I know I know, it’s a big extra expense on top of everything else, and sure, you can wait before buying this.. ok it might be prudent to use the included Brass nozzle untill it’s worn down, but this copper nozzle is just so extremely much nice than the standard Brass nozzles.

They were created for ultra high temperature, but lets take this note from E3D:

In addition to high temperature performance these nozzles have an advanced nickel based plating, considerably reducing the adhesion of plastic to the nozzle. This is great for everyday filaments keeping things clean and shiny, but is particularly important at temperatures above 300°C where a silicone sock can’t be used.

And that non-stick feature is what makes it so awesome. If you have printed PETG you’ll cry tears of joy when trying one of these as stringing is just so much easier to manage – also helps on all other materials.

Don’t go and buy the Copper Heater Block as it will really only make your heating up take much longer and suck out €26,4 of your pocket! .

I honestly beleive them to be not at all relevant when using the Silicone Socks on the standard Aluminium blocks, which are included.

Yes, I own one of these and I really don’t much like it. I have not seen any advantages over normal Heater Block. Right now I’ve mounted it on a hotend I use with the TL-Feeder for 2x filament input as it migt be better when hot and cold filament are constantly changed, but I havn’t tested it much yet.

40/80w Heater Cartridge

Price inc VAT €5,4 for 24v 40w
Price inc VAT €6,73 for 24v 80w

What’s this now? Well, the included 30w heater with blue wires is just really slow and in some instances you will find it having problems keeping up the temperature. Especially when printing semi fast.

I strongly recommend buying the 24v 40w instead for this printer and if you tend to print very fast, you might even opt for the powerfull 24v 80w from RepRap.me

Just remember to do a new PID tuning if you change your heater or sensor.

Untill next time!

Wow, that was one long post! Next post is going to be all about the inert parts of the printer.

Posted on Leave a comment

Ultimaker – Fintuning nozzle distance from bed

This small blog-post guide can be used with any printer using the standard Gcode system.

I’m simply writing it in regards to Ultimaker as the issue has arisen from using these machines and their special kind of bed adjustment, which doesn’t provide any tools to do fine final adjustments.

Tools needed:

Pronterface/Printrun

Go to their website and download the program for your system. File downloads for Windows, Linux and MAC.

You can also go and visit their Github repository if you want to.

After installation you select proper Com port and Baud if/as needed and hit Connect.

Z-offset

When you connect you automatically get a detailed readout of current settings.

I’ve noted the Extruder steps/mm as many would like to adjust these some.

The current Z-offset as defined during setup of myUltimaker is Z-12.45. The nozzle needs to be a tad closer to the bed, so I’ll change the Z-offset to Z-12.40 as raising number is closing in the distance, while lowering the number increase the distance.

Adjust Z-offset

We are using M206: Offset Axes to change the Z-offset.

We simply type M206 followed by the new value of Z-12.40
M206 Z-12.40

Save changes

Now use M500 to save the new settings to Eeprom in order for the changes to be in place after poweroff.
M500
It will all look like this in Pronterface serial window:
>>>M206 Z-12.40
SENDING:M206 Z-12.40
SENDING_M500
echo:Settings Stored

Reconnect to verify changes are now changed. Might want to unplug USB and power the printer on and off to verify the changes are stored correctly as well.

Posted on 2 Comments

Duet WiFi/Eth – Use M584 to autolevel or sync Z-axis using 2 or more motors

I originally planned to use 3 seperate Z-motors for my BeTrue3D Printer project back last christmas, but since I’m using some special hollow Nema 17 and bespoke 1204 Ballscrews + top-fixing blocks the price would be like $100 for one extra motor on the Z-axis.

The money was just one concern. One which I could have overcome (by waiting some) if I wanted to, but it would also cause the printer to be much deeper without giving me larger printing area, and so it wouldn’t fit on my desk.. which was a primary requirment!

A rather big issue was how the RepRapFirmware at the time did not support this form for autolevel and there was no date for when it might be available.

Anyway, here’s a blog-post about it. I’ll at some later date make some youtube video to show how it works, so stay tuned! 🙂

  1. Independent Z-Motors
  2. Is this autolevel?
    1. Autocompensation
    2. Autolevel
  3. My usage of 2x Z-motors
    1. What am I going to do here exactly?
    2. Why? Is it even needed?
    3. How is this going to work in practice?
  4. Motor remapping for dual Z
    1. Physical Drive Connection
    2. Use M584 to remap the drives
    3. Configure Drives
    4. Endstop setup
  5. Example setup for non-duex user
  6. New Homing files

1) Independent Z Motors

It all ended up with me using 2 independent Z-motors.

I started out driving both from the same Z-driver but installed a limit-switch at each motor, which would be at Z-max, and planned how to trigger them using identical screws on both sides, mounted down through a threadded m3 hole in the Z-gantry for just this purpose.

The screws can of course be turned some, if fineadjustment is needed. I used some Loctite Threadlocker (open UK Ebay) to make sure it didn’t rattle loose.

2) Is this autolevel?

You might ask if this is autolevel by now, as it looks completely different than what you are used to see with a probe or sensor or similar..

Autocompensation

We normally see some sort of sensor near the hotend, which probes places around the bed and then compensate according to how uneven the printbed is.

This sort of automation is more correctly called autocompensation as it can compensate for various erros, most often just for a non-flat printbed though.

The compensation for non-flat surface is achieved by compensating for these errors by gradually, over the first xx layers flattening out the area on which it is printing. Ie, some areas are printed with a thicker layer than on others. After xx layers it can start printing normally

There are more to this, and different methods to compensate for non-square frame and axes etc, but this is beyond this blog-post

Autolevel

Autolevel on the other hand is when one or more sensors determine the posistion of the printbed and by using 2 or more motors makes it completely level compared to the XY axes.

You would want to use 3 or more motors to make most out of this Autolevel function.

A short note on using Autolevel: functions with RepRapFirmware: The M320 autolevel gcode is not currently implemented in the firmware, and seems it’s not going to be either, as the current functions G29-G32 is fullfilling the same functions more or less. Currently only Repetier firmware is making use of the M320-322 gcodes.

3) My usage of 2x Z-motors

As I talked about previously I selected to only use 2 Z-motors and the function to use these for Autolevelfunctions were recently made available in the RepRapFirmware via the M584: Set drive mapping, so now I’m in business!

In all fairness, the M584 has been around for some time, but I’ve been waiting for a finished sort of system for autolevel, which, as it turns out (see note above) is not going to be implemented, so here I am!

What am I going to do here exactly?

I’m going to home my Z-axis to Z-max and make each motor make use of it’s own endstop in order to make sure each end of the Z-axis is synchronized.

Why? Is it even needed?

In my optics, yes! Asolutely. Any machine using more than 1 z-screw should have this implemented.

Problem with multiple independent z-motors, yes, and even multiple axes driven by a single belt, is that one or more of the axes might get turned a bit. It can happen if you accidentially push on the plate or turn the screw, if you happens to move the z faster than it likes and one motor or screw skips a step or belt etc.

It might also be that your axes aren’t 100% to begin with, so you need to synch them up before each print, which you can do with this method.

How is this going to work in practice?

I’m going to use 2 different drivers for my Z-motors and use the associated Endstop connectors for these drivers as well. This is accomplished by using the M584 to define virtual axes.

It means we include both Z-motors in the original Z and then make a virtual axis for one of these motors in order for them to be able to move as one, but also make use of each motors’ own limit switch in order to make sure they are synchronized.

Motor remapping for dual Z

Before we get down to using M854, we need to use the M569 to define/check our physical setup.

Physical Drive Connection

My setup/explanation:
  • Drive 0-1 as X and Y, which are standard.
  • Drive 2 as left motor, which is normal Z
  • Drive 3 as Right Z-motor, which is normal Extruder0
  • Drive 4 – Standard Extruder1 – I am not using this, as all my extruders are on Duex5
  • Drive 5-9 – My extruders on Duex5


; Define Drives
; Physical Drive connection
M569 P0 S1 ; Drive 0 X
M569 P1 S0 ; Drive 1 Y
M569 P2 S0 ; Left z-motor (original Z)
M569 P3 S0 ; Right z-motor (Ex0)
; M569 P4 S0 ; EX1 - unused
M569 P5 S1 ; Extruder0 - Physical Tool 0
M569 P6 S1 ; Extruder1 - Physical Tool 1
M569 P7 S1 ; Extruder2 - Physical Tool 2
M569 P8 S1 ; Extruder3 - Physical Tool 3
M569 P9 S1 ; Extruder4 - Physical Tool 4

Use M584 to remap the drives

To make this all work, we need to tell the controller how we have conencted our physical connectors:

How to do this:
  • We are starting the new line, which we place under our M569 section above, by issuing the M584 gcode.
  • Then simply go through and use the definitions we made above.
  • X0 – Using Driver 0 as X
  • Y1 – Using Driver 1 as Y
  • Z2:3 – This is the new part, where we define that we are using both Driver 2 and 3 for our Z. This means both are used when hitting the move Z buttons.
  • U3 – We assign driveletter U to our second Z motor, using Drive 3.
    • When using virtual drivenumbers we can’t just come up with some random letters.
    • As of firmware 1.19, we can use UVWABC letters – in that order!
  • E5:6:7:8:9 – Defines how all drivers on the Duex5 are Extruders.
  • P3 – This defines the number of visible axes in our GUI, starting from the first, meaning the visible ones are: XYZ, while the 4th axis U is not shown up in the GUI.
    • You might want to have U visible at first in order to verify your new setup.

; Motor remapping for dual Z
M584 X0 Y1 Z2:3 U3 E5:6:7:8:9 P3 ; Driver 0 For X, 1 for Y, Z=2:3 U=3, Extruder 5-9

Configure Drives

Next step is to configure our machine to use 2 drivers instead of just 1 and to add the new U drive to our Drives configurations.

What you need to do now, is setup microstepping, steps/mm and all other such settings as if you have 2x Z-drives and 1x U-drive

Endstop Setup

Last item in our config.g we need to change is the Endstop configuration. Contrary to above, we do not define a second Z here (As we only have 1 z endstop), but instead just add the U endstop. It’s important that Z and U homes to same end; in this case at Z-max.

Example configuration for non-duex users

This section is a cleaned up section for all the non-duex owners, so you don’t have to sit and sort out my Duex5 config.

Just use the explanations for the Configure Drivers and Endstop Setup just above here.

Explanation:
  • Drive 0-1 as X and Y, which are standard.
  • Drive 2 as 1st Z-motor, which is normal Z
  • Drive 3 as Extruder0
  • Drive 4 as 2nd Z-motor – this is normally Extruder1


; Define Drives
; Physical Drive connection
M569 P0 S1 ; Drive 0 X
M569 P1 S0 ; Drive 1 Y
M569 P2 S0 ; 1st z-motor (original Z)
M569 P3 S0 ; Extruder0
M569 P4 S0 ; 2nd Z-motor - Normally used as Extruder 1

 

  • X0 – Using Driver 0 as X
  • Y1 – Using Driver 1 as Y
  • Z2:4 – This is the new part, where we define that we are using both Driver 2 and 4 for our Z.
    • This means both are used when hitting the move Z buttons.
  • U4 – We assign driveletter U to our second Z motor, using Drive 4.
    • When using virtual drivenumbers we can’t just come up with some random letters.
    • As of firmware 1.19, we can use UVWABC letters – in that order!
  • E3 – Defines Extruder0 as our extruder.
  • P3 – This defines the number of visible axes in our GUI, starting from the first, meaning the visible ones are: XYZ, while the 4th axis U is not shown up in the GUI.
    • You might want to have U visible at first in order to verify your new setup.

And the code to copy/paste:

; Motor remapping for dual Z
M584 X0 Y1 Z2:4 U4 E3 P3 ; Driver 0 For X, 1 for Y, Z=2:4 U=4, Extruder 3

New Homing files

It’s important we remember to create new/modify our homing files to match our new setup.

In particular we need a new Homez.g and a modified Homeall.g.


And the code for easy copy/paste:

G91 ; Relative mode
M584 Z2 ; Split Z into 2 (Z+U)
G1 Z250 U250 F2000 S1 ; Move up to 250mm in the +Z direction. S1 to stop if endstop is triggered
G1 Z-2 U-2 F600 S2 ; Move 2mm in the -Z direction - (I'm not sure what S2 is for?)
G1 Z3 U3 F100 S1 ; Move slowly 3mm in the +Z direction, stopping at the homing switch
M584 Z2:4 ; Join U to Z again (pay attention to drive numbers used)
G1 Z-5 F3000 ; Move back again 5mm in the -Z direction
G90 ; Back to absolute mode

You need to update your Homeall.g files accordingly as well.

Posted on 2 Comments

Duet WiFi/Eth – PID tuning hotend

Since I just changed my old cartridge for a 24v 80w heater on my 5way Diamond hotend and used High Temperature Liquid Gasket Silicone as a sealant on the heatsinks and the Diamond nozzle itself, as is clearly evident on the photo, I need to do a new PID tuning, which is a good starting point for writing a short blog-post on doing just that.

  1. Gcodes used
  2. Prepare for PID tuning
  3. PID-tune hotend heater
    1. Parameters
    2. Heater to tune
    3. Power
    4. Target Temperature
  4. Parameters to use and store in config.g
    1. New PID-Tuning
    2. I’ll add this in my Heaters/Hotend section
  5. Debug – Failing to tune?
    1. Temperature was not reached
    2. Starting temperature is not stable
    3. Over-powered and a fire risk

1) Gcodes used

  • For the actual PID tuning, we are going to use M303
  • M307 H1 to display the parameters we garnered from the PID tuning.
  • Finally you could use M500 to store the parameters in a config-override.g file, which matches the old school Eeprom M500, and overrule the settings in config.g file.
    • I personally have an aversion to this sort of having configurations stored in different places. Especailly for core parameters that shouldn’t change.
    • In my opinion it just leads to confusion as people tends to forget they have anything stored in the override file and can’t figure out why the printer doesn’t accept the new parameters written in the config.g file.

2) Prepare for PID tuning

I prefer to put my hotend close to the heated bed, heat the bed to my most used temperature and then turn on the object-cooling fans at maximum before doing a hotend PID-tuning.

Why you might ask?

I prefer to similuate actual printing situation to get a PID tuning that most closely matches the actual usage scenarios of my printer.

3) PID-tune hotend heater

Parameters

Hnnn heater number
Pnnn PWM to use, 0 to 1 (you should normally use 1 i.e. full power)
Snnn target temperature

Heater to tune
To actually do a PID tuning we need to use the M303 command followed by H1 to denote the heater used, which is the first heater.

If you PID tune your bed, it is H0 by default.

Power
Next we need to define the amount of power we feed our heater cartridge. This is denoted by P followed by a number like P1 for 100% power and P0.5 for 50% power.

RepRapFirmware used to be very, very restrictive regarding power setting. I had to put it at P0.1 (10%) to do a succesfull tuning in january, but His time I could run it at P1 (100%).

Target temperature
Finally we need to define target temperature using S followed by temperatures in celcius like S220 for 220c. Target the temperature you use the most. So 200ish for PLA if that is what you print, or 240 or something like that, if you mostly print ABS.

It means I’ll tune my to 200c at full power like this (mine failed when target was 220):
M303 H1 P1 S200

Sequence is from the bottom and upwards

4) Parameters to use and store in config.g

As mentioned above I’m not a fan of using the M500 to store in config-override.g method, so I’ll get the result from the PID tuning using M307 H1 and put it into my config.g file.

It all seems a bit confusing to be sure

Lets look at the top line, which is the one we are going to be using:
Heater 1 model: gain 188.4, time constant 121.7, dead time 1.4, max PWM 0.50, mode: PID

This translates into:

  • M307 H1 for Heater 1
  • A188,4 for Again
  • C121.7 for Constant
  • D1.4 for Dead time
  • and S0.5 for max PWM

* Default is PID for hotend, so we don’t need to write parameter for this.
* Default for BED is Bang-Bang method, so you’d have to add B0 in the end, to force it to use PID.

M307 H1 A188.4, C121.7, D1.4 S0.5

I honestly do not know why it puts max power at 50%, so i’ll put it at S1 (100%) and use the new parameters to do a new PID tuning like this:

M307 H1 A188.4, C121.7, D1.4 S1

4.1) New PID-Tuning

Saving config.g with the above parameters I’ll run a new PID-tuning target at 220c like so:

M303 H1 P1 S220

I ended up with new parameters with full power on my heater:
Heater 1 model: gain 375.3, time constant 125.9, dead time 3.8, max PWM 1.00, mode: PID

This translates into:

  • M375.3 H1 for Heater 1
  • A125.9 for Again
  • C125.9 for Constant
  • D3.8for Dead time
  • and S0.5 for max PWM

Which means we are going to add this line to our config.g file.

M307 H1 A375.3, C125.9, D3.8 S1

4.2) I’ll add this in my Heaters/Hotend section.

So, this is ho my Hotend section turned out looking 🙂

5) Debug – Failing to tune?

There are different reasons why it migh fail to tune.

Temperature was not reached

Auto tune cancelled because target temperature was not reached Heater 1 switched off

Solution: Try using a lower temperature. It might fail if it took too long to reach the target temperature.

Starting temperature is not stable

Auto tune cancelled because starting temperature is not stable

Solution: You need to wait for temperature to get almost back to room temperature before trying again.

Over-powered and a fire risk

Warning: Heater 1 appears to be over-powered and a fire risk if left on at full power, its temperature is predicted to reach XXXc

Solution: Lower the value of the P parameter, which is the current you feed your heater during testing

Posted on 7 Comments

Lets build an Ultimaker 2+ Extended clone – Part 5 – Lets buy stuff 3 – DIY – Motors, LEDs and more

In our previous blog-post series, we focused on buying stuff premade.

This post will focus on getting the proper wires, connectors, leds and motors to put our own parts together, and hopefully save some money along the way 🙂

The big saving is going to show if you like to tinker with stuff, as you’ll have bought yourself a nice cache of spare-parts for this and other projects.

You need a soldering iron for this and some basic tools. It might be usefull to buy an actual crimping tool, but it’s not mandatory.

 Index

LEDs for front lightning

In the Ultimaker 2 printers we have LED strips on the inside of the front sides and top.

It’s basically just 3 strips of 24v bright white leds with wires attached between them, and a wire with a 2-pin Molex kk connector going down to the controller.

 

So, first we buy a roll of 24v bright white leds. They cost $5-10 depending on length

Links

Roll for wires

Next we need to get some wires. I rather like to buy 1m rolls of multicolored wires from RobotDigg. 1M doesn’t sound like much, but there are 30-40 wires of 1m each in a roll, and it’s very usefull to get thme like this.

Links

Price is from $1.8+ depending on how much you buy.

  • You need 1 roll of the black-red bundle.
  • If you like to make other projects, I recommend buying one or both of the 3-color and 5-color rolls as well.
  • We’ll look at wires for motors elsewhere on Aliexpress.

Connector(s)

We are going to buy a box of connectors. These will come in very handy for any number of projects.

Price at $3.40

Heatshrink

We need some heatshrink to put onto our parts, where we solder things together.

I can recommend buying both a set of black and one of red pieces, but 1 color is going to work fine.

If you want it just right, you need a white set as well, for the front LEDs, allthough you can’t see these when done.

Price $2.4-$5ish

Make it

I used 3x 30cm LED strips, but these lengths are determined by the LED roll you buy, as they can be split up in different lengths.

Measure strips and wires.

Solder and put on heatshrink

Remember to slide on heatshrink before you solder both ends of the short wires – speaking from experience, hehe.

Testing and installation

Test the wires using a 24v source.

You also MUST clean up the inner face of the front-panel using Acetone or the LED strips will come loose.

Price compare

If you bought pre-made it would cost you $10

If you bought the parts and made yourself, it would cost:

Leds 5m $5.84
Connectors 50 sets $2.4
Wires 40m $1.8
Heatshrink – much 2.4
DIY + spares $12.44

Motors

We need 3 motors for XY and Extruder + a motor with build in leadscrew for Z.

We need 67cm of wires on your motors and appropriate connectors.

Links and price

The leadscrew on Z-motor is around 36cm long. Do not buy a motor and loose leadscrew. You are loosing a lot of Z-height and it’s not as good. Especially if you use a flexible coupler.

I have only listed Robotdigg as they have cheaper motors and we are going to buy wires and stuff from them as well.

But remember to factor in the shipping costs when you decide on where to buy.

  • Buy 350mm linear stepper from Robotdigg at $34
  • XY and Extruder 42HS40-1704 at $6.40 each = $19.2
  • XYE Motors comes with 1m wires and correct plugs (not entirely sure of Z connector, but you are going to get one when buying endstops below)

Adjust motors axels

One draw-back is that you need to shorten up the axels of the motors or they are going to hit the rear and side respectively.

You need to twist the cable pairs. First  twist red/blue and black/green, and then twist the resulting 2 bundles.

Price compare

Premade set $99
DIY set $53,2

Endstops

We are going to need 3 endstops, also known as a Limit Switch for our X-min, Y-max and Z max.

The Z-max endstop has a short arm and the other two needs to have long arms.

They are all configured as NO (Normally Open) in original firmware. This means the wires is connected as shown on the photo.

Wire colors, blue, red and black are in place in order to know what’s what.

Remember the the lengths of the wires for our Extended is not the same as in the pdf files.

There is a single 2-pin HX2.54 connector on each endstop wire.

 

Links and Price

Expect to pay around $0.2-0.3 for each limit switch. Search around for prices if you like. You might want to find a set of 10 if you want to have some spares, or some for other projects.

Price compare

  • Premade $7-14 for a set
  • DIY set costs $3.63 and you’ll have a lot of spares.

Wireharness from controller to carriage

The Wireharness consists of the wires from carriage (carriage is the assembly for hotend and fans) to controller. Since the wires from Heater Cartridge and PT100 temperature sensor runs straight down to the controller on their own, the Wireharness is really only for the small Heatsink fan and the 2x cooler fans.

If you want the right colors you should buy 1 more roll of wires from Robotdigg. I’d replace the blue one with a white wire, as the blue wire isn’t included in any of the wire bundles.

Links and Price

  • Premade $10
  • 1 roll of 5 color wires (50m) at $1.8
  • Connectors from LEDs and Endstops.
  • Heatshrink from LEDs

The wireharness you buy has 3 wire-sets in it, buy one of these are not used. I do not know what was intended here. The red/brown pair is unused.

Phto above shows the one I made for this project.

The Green/Yellow is for the 12v fans. When put in series they each get 12v from our 24v system.

Total Price compare

I’ve picked the price in the middle of an eventual price-range.

Remember several of the pieces from LEDs are used for the other Items.

Item Premade DIY
LEDs  $10  $12,44
Motors  $95  $53,2
Endstops  $10,5  $3,63
Wireharness  $10  $1,8
Total $125,5  71,07

You save $53,93 on just this project by doing a bit of DIY!

Savings on future projects are going to be bigger as you now have a cache of usefull items 🙂

Posted on Leave a comment

Spot bent 8mm rod in Ultimaker 2

Spotted irregular movement of my back slider, in my newly build Ultimaker 2+ Extended and thought I’d share how to check your rods.

How to check if your rods are straight.

They look straight and feel straight, but when mounted it is easy to see they if they are not.

Simply place the slider in the middle of the rod you want to check. Move the carriage back and forth.
The slider should be still. No movement at all.
As you can see, this slider moves up and down as I move the carriage back and forth, so it needs to be discarded.

If you can’t see how the slider moves up and down, then try focusing on the belts connecting to the slider.